Classification of seismic signals by integrating ensembles of neural networks

نویسندگان

  • Yair Shimshoni
  • Nathan Intrator
چکیده

We examine a classification problem in which seismic waveforms of natural earthquakes are to be distinguished from waveforms of man-made explosions. We present an integrated classification machine (ICM), which is a hierarchy of artificial neural networks (ANN’s) that are trained to classify the seismic waveforms. In order to maximize the gain of combining the multiple ANN’s, we suggest construction of a redundant classification environment (RCE) that consists of several “experts” whose expertise depends on the different input representations to which they are exposed. In the proposed scheme, the experts are ensembles of ANN, trained on different Bootstrap replicas. We use various network architectures, different time–frequency decompositions of the seismic waveforms, and various smoothening levels in order to achieve an RCE. A confidence measure for the ensemble’s classification is defined based on the agreement (variance) within the ensembles, and an algorithm for a nonlinear integration of the ensembles using this measure is presented. An implementation on a data set of 380 seismic events is described, where the proposed ICM had classified correctly 92% of the testing signals. The comparison we made with classical methods indicates that combining a collection of ensembles of ANN’s can be used to handle complex high dimensional classification problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying Seismic Signals by Integrating Ensembles of Neural Networks

| This paper proposes a classiication scheme based on integration of multiple Ensembles of ANNs. It is demonstrated on a classiication problem, in which seismic signals of Natural Earthquakes must be distinguished from seismic signals of Artiicial Explosions. A Redundant Classiication Environment consists of several Ensembles of Neural Networks is created and trained on Bootstrap Sample Sets, u...

متن کامل

Classiication of Seismic Signals by Integration of Neural Networks' Ensembles

We assess the applicability of a collection of Neural Networks' Ensembles for discrimination of Seismic Signals. The problem considered is of classifying local seismic events, into Natural Earthquakes and Man-Made Explosions, based on their waveforms recordings from a single seismometer. Several preprocessing procedures were applied and Ensembles of Neural Networks were trained on Bootstrap Sam...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1998